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ABSTRACT. We know that Modus Tollendo Tollens is a difficult rule to apply. We also know 
that there are circumstances in which people easily use it. One of those circumstances is 
whenever the conditional premise is an obligation conditional. On the other hand, the 
Stoic criterion of the conditional, that is, the proposal Chrysippus of Soli gave for the latter 
logical connective, has been related to Non-Axiomatic Logic and Inheritance Logic. My 
aim here is to try to show that obligation conditionals can be deemed as deontic inher-
itance statements in Non-Axiomatic Logic or Inheritance Logic. I will attempt to argue 
that it is possible to build a deontic inheritance logic with two essential characteristics. 
First, it respects the Stoic criterion of the conditional. Second, in consistence with the lit-
erature, it leads to the conclusion expected by classical logic when the conditional is an 
obligation. 
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Introduction 

Modus Tollendo Tollens is one of the logical schemata Chrysippus of Soli pin-
pointed1. It can be a cognitive problem: it is a correct rule in propositional logic, 
but it is not always applied2. It is usually expressed as the derivation in (1). 

                                                 
1 E.g., Diogenes Laertius (Vitae Philosophorum, 7, 80). 
2 E.g., Byrne & Johnson-Laird (2009). 
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(1) {P  Q, Q} ⊢ P 

 
In (1), ‘’ is the conditional in classical logic, ‘’ stands for negation, and ‘⊢’ rep-
resents logical deduction. 

According to propositional calculus, (1) must be true regardless of its content. 
However, people do not often appear to think that. It seems that some contents 
lead individuals to the conclusion more easily than other contents. This is what 
happens with obligation conditionals, since they do not cause problems with Mo-
dus Tollendo Tollens. When the first premise expresses that if the first clause is 
true, it is mandatory for the second clause to occur, people tend to accept infer-
ences such as (1)3. So, given an obligation conditional and the negation of its con-
sequent, individuals habitually deem the negation of its antecedent as the conclu-
sion4. 

This fact is a challenge for cognitive theories. It is not hard to explain why peo-
ple reject (1). What is difficult is to explain why (1) is sometimes accepted (e.g., 
when the conditional is an obligation conditional). To explain why people rejects 
(1), it is enough to suppose that (1) is not a part of the schemata naturally working 
in human reasoning. This idea can be supported even assuming that the human 
mind follows a formal logic. For example, the mental logic theory5 proposes that 
there is a mental logic leading the inferences human beings carry out. However, 
that mental logic does not include Modus Tollendo Tollens as one of its basic or 
‘core schemata’6. 

The problem is not this. The real problem is why there are occasions (such as 
those in which the conditional is an obligation conditional) in which individuals 
do make inferences such as (1). As far as I know, the accounts are few. One of the 
most relevant explanations at present is that of the theory of mental models7. Ac-
cording to this theory, regular conditionals effortless lead to a mental model in 
which the two clauses are the case. Any other mental model cannot be identified 
if there is no effort8. But the case of obligation conditionals is special9. 

Obligation conditionals allow quickly noting two mental models: that in which 
the two clauses are the case and that in which only the first clause is the case. By 
                                                 

3 See also, e.g., Byrne (2005). 
4 See also, e.g., Cramer, Hölldobler, and Ragni (2021). 
5 E.g., Braine & O’Brien (1998). 
6 See also, e.g., O’Brien (2014); O’Brien (2021). 
7 E.g., Johnson-Laird (2023). 
8 See also, e.g., Johnson-Laird and Ragni (2019). 
9 Byrne (2005). 
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virtue of the latter model, individuals identify the forbidden circumstances (those 
matching it)10. Although the proponents of the theory of mental models refuse that 
models can be expressed by means of logical formulae (mental models represent 
reality, and they are not formulae11), to simplify, I will describe the thesis of the 
theory of mental models saying that a regular conditional such as (2). 

 
(2) P  Q 

 
Easily enables to note mental model (3). 
 

(3) (P  Q) 
 

Symbol ‘’ in (3) expresses possibility, but the theory of mental models does not 
understand ‘possibility’ exactly as in modal logic12. On the other hand, ‘’ works as 
conjunction. 

However, following, for example, Byrne13, an obligation conditional such as (4). 
 

(4) O(P  Q) 
 
Where ‘O’ indicates obligation. 
 
Leads without difficulties to (5). 
 

(5) Per(P  Q)  Per(P  Q) 
 
Where ‘Per’ stands for permission. 
 

I will not argue against this account. I will only propose another alternative based 
on Inheritance Logic and Non-Axiomatic Logic14. My aim is to show that formulae 
such as (4) can be understood from Inheritance Logic (IL) and Non-Axiomatic 
Logic (NAL). That will allow me to present a Deontic Inheritance Logic (DIL). As 
described below, DIL can account for why Modus Tollendo Tollens is hard when 

                                                 
10 Byrne (2005). 
11 See also, e.g., Johnson-Laird (2010); Johnson-Laird (2012). 
12 For the exact meaning of ‘possibility’ in the theory of mental models, see, e.g., John-

son-Laird (2023); Johnson-Laird and Ragni (2019). 
13 Byrne (2005). 
14 E.g., Wang (2013). 
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the first premise is such as (2), and why it is not difficult when that very premise is 
such as (4). 

In addition, I will support the idea that DIL is coherent with the view Stoic logic 
has about the conditional15. So, my thesis will be that DIL is not only consistent 
with what the cognitive science literature provides about Modus Tollendo Tollens, 
but also with logical proposals from the past such as Stoic logic. 

The sections of this paper will be the following. First, I will describe IL. Then, I 
will explain how NAL derives from IL. Third, I will show the way Stoic logic has 
been related to NAL. Fourth, I will introduce DIL. In the last section, I will argue 
that DIL can account for what happens with Modus Tollendo Tollens when its con-
ditional is an obligation conditional. I will also give reasons for accepting relations 
between Chrysippus’view of conditionals and DIL. 

 
Idealized inheritance statements in IL 

 
IL is an idealization. It is an idealization of NAL. Nevertheless, perhaps to under-
stand NAL, the best option is, as Wang does16, to consider IL first. IL consists of 
inheritance statements such as (6). 

 
(6) “S  P”17 

 
In (6), ‘S’ refers to the subject of the statement, ‘’ denotes the copula providing 
the inheritance relation, and ‘P’ stands for the predicate of the statement. 

Inheritance statements such as (6) are based on concepts such as ‘extension’ 
and ‘intension’. But those concepts are not interpreted in IL as usual in the logical 
literature. Let ‘SE’, ‘PE´, ‘PI’, and ´SI’ be, respectively, the extension of the subject, the 
extension of the predicate, the intension of the predicate, and the intension of the 
subject. (7) holds in IL. 

 
(7) “(S  P)  (SE  PE)  (PI  SI)”18 

 
In (7), ‘’ is the symbol for biconditionality in logical calculus. 
For example, let us suppose (8), (9), (10), and (11). 
 

                                                 
15 E.g., Mueller (1978). 
16 Wang (2013). 
17 Wang (2013,14, Definition 2.2). 
18 Wang (2013, 20, Theorem 2.4). 
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(8) Rice  Cereal 
 

(9) Corn  Cereal 
 
(10) Wheat  Cereal 
 
(11) Cereal  Vegetable 

 
In IL, this means that (12), (13), (14), and (15) hold. 
 

(12) {Rice, Corn, Wheat}  CE 
 
Where ‘CE´ represents the extension of ‘Cereal’. 
 

(13) {Cereal}  {RI  COI  WI} 
 
Where ‘RI´, ‘COI’, and ‘WI’ are, respectively, the intensions of ‘Rice’, ‘Corn’, and 

‘Wheat’. 
 

(14) {Cereal}  VE 
 
Where ‘VE’ stands for the extension of ‘Vegetable’. 
 

(15) {Vegetable}  CI 
 
Where ‘CI’ indicates the intension of ‘Cereal’. 
 

An important set in IL is the set of what the system knows, that is, the set of inher-
itance statements the system knows. That set is called ‘K’19. Following the previous 
examples, (16) is correct in IL. 

 
(16) {(8), (9), (10), (11)}  K 

 
Besides, inheritance statements are transitive20. By virtue of transitivity, it is possi-
ble to derive new inheritance statements from the statements that are already in 
K. From (8), (9), (10), and (11), we can deduce (17), (18), and (19). 

                                                 
19 Wang (2013, Definition 2.4). 
20 Wang (2013, Definition 2.2). 
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(17) Rice  Vegetable 

 
(18) Corn  Vegetable 
 
(19) Wheat  Vegetable 

 
Lastly, IL accepts ‘Closed-World Assumption’21. This assumption is based on Russell 
and Norvig’s idea that ‘unknown’ should be deemed as ‘false’22. Therefore, it means 
that what is not in K (or it cannot be deduced from K) is not true. Thus, the system 
can respond to questions such as “S  P?”, “S  ?”, and “?  P”. But when there is 
no answer to them, that is, when, respectively, ‘S  P’ is not in K or it cannot be 
deduced from K, no statement with ‘S’ as its subject is in K, or no statement with 
‘P’ as its predicate is in K, the system returns ‘NO’23. 

 
Realistic inheritance statements in NAL 

 
IL might not be useful to work as the human mind in some circumstances. It can 
have difficulties in situations in which the resources or knowledge do not suffice. 
This is the reason why NAL is derived from IL in works authored by Wang24. There 
are relevant differences between IL and NAL. While IL follows Closed-World As-
sumption, NAL admits the ‘Assumption of Insufficient Knowledge and Resources’ 
(AIKR)25. 

NAL can describe situations in which people progressively acquire pieces of ev-
idence without getting total knowledge. Let us suppose that we have seen ten 
mammals: a lion, a dog, a cat, a rabbit, a rhinoceros, a human being, a gorilla, a 
bear, a whale, and a bat. Although most of them are terrestrial, that information 
does not enable us to state (20). 

 
(20) Mammal  Terrestrial 

 
The whale and the bat are the animals causing problems: whales live in the sea and 
bats can fly. 

                                                 
21 Wang (2013). 
22 Russell and Norvig (2010). 
23 Wang (2013, 23, Definition 2.10). 
24 E.g., Wang (2013); Wang (2023). 
25 See also, e.g., Wang (2011). 
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If we move from IL to NAL, we can capture cases such as this one. In NAL, inher-
itance statements such as (6), that is, ‘S  P’, are transformed into (21). 

 
(21) “S  P f, c”26 

 
What (21) adds to (6) is a truth-value. In IL inheritance statements are either true, 
with truth-value 1, or false, with truth-value 0 (as said, it depends on whether they 
are in K). In NAL there are values for frequency (f) and confidence (c)27. We have 
formulae to calculate both. 

Let ‘w’, ‘w+’, and ‘k’ be, respectively, the total evidence the system knows, the 
positive evidence the system knows, and a constant whose value can be, for exam-
ple, 128. The formulae would be “f = w+/w” and “c = w/(w + k)”29. 

Considering the previous example, it is easy to calculate w and w+. There is a for-
mula for that too: “w+ = |SE  PE|+|PI  SI|”30. Since we have seen ten animals, w = 10. 
Taking the first summand of the latter formula, ‘|SE  PE|’, into account, we can note 
that w+ = 8. This is because only eight of the ten animals we have checked are both 
mammals and terrestrial. The second summand, ´|PI  SI|’, could refer to additional 
evidence. For example, if K included the information that both mammals and terres-
trial beings are living organisms, that would be also positive evidence to consider. But 
to make the point of this paper, it is enough to pay attention to the first summand. 
Based on that set, the values of f and c for (20) would be those in (22). 

 
(22) Mammal  Terrestrial 0.8, 0.9 

 
This is because f = 8/10 = 0.8, and c = 10/(10 +1) = 10/11 = 0.9. 
 

NAL foresees that the system can increase its knowledge. For that reason, the val-
ues of f and c can always change. NAL has rules to update those values. It also has 
rules to make inferences such as deductions, inductions, abductions, etc31. But as 
far as the aims of this paper are concerned, just two more characteristics of NAL 
require to be mentioned. One of them is that NAL is not only one logic. There are 

                                                 
26 Wang (2013, 40, Definition 3.8). 
27 Wang (2013, Definition 3.3). 
28 See, e.g., Wang (2013) for reasons for giving that value to k. 
29 Wang (2013, 29, Definition 3.3). 
30 Wang (2013, 28, Definition 3.2). 
31 See, e.g., Wang (2013). 
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different layers of NAL with different rules and grammars32. The components de-
scribed above correspond to the first layer, and they suffice for my goals here. On 
the other hand, whenever a statement does not have its value of frequency or its 
value of confidence, the system assigns default values: f = 1.0 and c = 0.933. 

 
Chrysippus of Soli and NAL 

 
The Stoic criterion for the conditional, that is, the requirement Chrysippus of Soli 
proposed for the latter connective34 has been related to NAL35. This has been done 
because that relation allows dealing with the Stoic conditional from a computer 
program. NAL is a logical system leading to the building of Non-Axiomatic Reason-
ing System (NARS). NARS is a computer program trying to come to conclusions in 
a context akin to that of human beings, that is, a context characterized by AIKR36. 

To relate the Stoic view of the conditional to NAL, two suppositions are necessary. 
The first one is that Chrysippus not only supported the ‘connexivist view’ of the condi-
tional37 but also the ‘inclusive view’38. The second one is to accept the difference be-
tween strong and weak conditionals in Stoic logic that Sedley39 indicates40. 

The connexivist and the inclusion views are two of the four interpretations of 
the conditional Sextus Empiricus described41. The connexivist view42 is usually at-
tributed to Chrysippus of Soli43. It provides that the negation of the consequent, or 
second clause, should be incompatible with the antecedent, or first clause. On the 
other hand, the inclusion view proposes that the consequent, or second clause, 
should be contained within the antecedent, of first clause. The assumption consists 
of assuming that Chrysippus argued in favor of the two criteria, and that both were 
the same. It can be thought that if the consequent, or second clause, is included in 

                                                 
32 For a description of those layers, see, e.g., Wang (2013). 
33 E.g., Wang( 2013). 
34 E.g., O’Toole and Jennings (2004). 
35 López-Astorga (2024). 
36 See also, e.g., Wang (2006). 
37 E.g., O’Toole and Jennings (2004). 
38 This view is described in Sextus Empiricus (Pyrrhoniae Hypotyposes, 2, 112); see 

O’Toole and Jennings (2004). 
39 Sedley (1984). 
40 These are the two assumptions in López-Astorga (2024) to relate Stoic logic to NAL. 

My explanation below follows that in López-Astorga (2024). 
41 O’Toole and Jennings (2004). 
42 Which is in Sextus Empiricus (Pyrrhoniae Hypotyposes, 2, 111). 
43 See also Gould (1970). 
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the antecedent, or first clause, that implies that the negation of the former cannot 
be consistent with the latter. The acceptance of this assumption is based on works 
such as those of Kneale and Kneale44, Lenzen45, or Long and Sedley4647. Thus, given 
that in NAL inheritance statements represent a relation in which the intension of 
the predicate is contained within the intension of the subject, we can say that the 
Stoic conditional is not different from inheritance statements such as (6) or (21)48. 

As far as Sedley’s account about Stoic weak conditionals and Stoic strong con-
ditionals49 is concerned, the point is that both cannot be expressed in the same 
way. If the conditional relation between P and Q is not clear, that is, it is not obvi-
ous that Q causes P to happen (or that the meaning of P includes that of Q), the 
relation must be expressed as ‘it is not the case that P and not Q’. However, if the 
relation is clear, that is, it is evident that Q and P are incompatible (and that the 
meaning of P includes that of Q), the relation must be expressed as ‘if P then Q’. 
This difference can be understood from NAL as a difference between frequency 
values. The Stoic strong conditionals are those for which f = 1, that is, for which w+ 
= w. The Stoic weak conditionals are those for which f < 1, that is, for which w+ < w50. 

How all of this can be computationally treated has been described. By means of 
a function written in Common Lisp language, a program can choose the appropri-
ate way to express a Stoic conditional relation. The function only needs three data 
to be indicated: the first and second clauses and the value of frequency51. That func-
tion is reproduced in Appendix 1. In that appendix, I also develop the function from 
my arguments in the present paper. 

This shows how Chrysippus’ criterion can be addressed from NAL and NARS. In 
the next section, I will present DIL. My purpose is that DIL is consistent with both 
the literature about Modus Tollendo Tollens with obligation conditionals and this 
account about the Stoic requirement for the conditional. 

 

                                                 
44 Kneale and Kneale (1962). 
45 Lenzen (2019). 
46 Long and Sedley (1987). 
47 In fact, works such as those are the works López-Astorga (2024) cites to support the 

idea that, in Chrysippus’ view, the connexivist and the inclusion requirements are the 
same. 

48 López-Astorga (2024). 
49 Sedley (1984). 
50 López-Astorga (2024). 
51 López-Astorga (2024). 
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A deontic inheritance logic 
 
To insert obligation conditionals such as (4) into IL and NAL, it is needed to con-
sider how those conditionals can work as inheritance statements. Since in state-
ments such as (6) or (21), S and P are terms, and not sets52, they can refer to actions 
or circumstances. For example, let us think about a sentence such as (23). 

 
(23) “If a person is drinking beer, then the person must be over 19 years 

of age”53. 
 

This is an obligation conditional that often gives good results in tasks with the 
structure of Modus Tollendo Tollens. It can be deemed as an inheritance statement 
such as (24). 

 
(24) Beer  Over 

 
In (24), ‘Beer’ means ‘to drink beer’ and ‘Over’ represents ‘to be over 19 years of age’. 

To be an inheritance relation, (24) requires (25) and (26) to hold. 
 

(25) BE  OE 
 

In (25), ‘BE´stads for the extension of ‘Beer’ and ‘OE’ refers to the extension of ‘Over’. 
 

(26) OI  BI 
 
In (26), OI indicates the intesion of ‘Over’ and ‘BI’ is the intension of ‘Beer’. 
This is not a problem. If people under 19 years old are prohibited from drinking 

alcohol, (25) and (26) should be the case. As far as f and c are concerned, we must 
note that obligations are not necessarily built from experience. One might think 
that a statement such as (24) does not arise from people’s observation: it does not 
depend on the number of people over 19 years old that have been reviewed to 
check whether they drink beer. This is because it does not depend on the elements 
of BE, BI, OE, and OI in the past. When an obligation is provided, it is expected that 
the obligation is followed, whether it has been followed in the past or not. In fact, 
in standard deontic logic, propositions such as (27) are not usually admitted54. 

                                                 
52 Wang (2013). 
53 Cramer et al. (2021, 2337); coming from Griggs and Cox (1982). 
54 E.g., Forrester (1996, Proposition SDLX4). 
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(27) OP  P 

 
In standard deontic logic, it is not generally accepted that the fact that something 
is mandatory implies the fact that it is the case55. The validity of an obligation is 
independent of its compliance. Therefore, obligations do not necessarily arise from 
experience or are truer if people fulfill them. 

As mentioned, if a statement such as (24) does not have a truth-value, NAL 
should assign f = 1 and c = 0.9 to it. Those values are already high. However, in the 
case of an obligation, f is not relevant, since positive evidence is not relevant. On 
the other hand, c should not be addressed either, as the acceptance of an obligation 
does not depend on the amount of evidence about it we have. 

From this point of view, given that IL is linked to ideal situations, to deem obli-
gation conditionals as inheritance statements in IL coexisting with inheritance 
statements in NAL seems the most appropriate option. From now on, I will use 
‘DIL´ to refer to this combination of obligation conditionals as inheritance state-
ments in IL with inheritance statements in NAL. 

An important point is that, despite what was said, we can attribute values for f 
and c to inheritance statements corresponding to obligations in IL. The latter idea 
is not hard to argue. This is because “…if a statement has truth-value true in IL, then 
it has truth value 1, 1 in NAL”56. In IL, evidence is complete. When evidence is 
complete, “w  ∞” and “c = 1”57. In addition, given that IL assumes Closed-World 
Assumption, every statement in IL is undoubtedly true, that is, f = 1 for them. We 
can say that w+ = w in IL. So, w+/w = 1 in IL58. Hence, we can also claim that the 
inheritance statements in IL referring to obligation conditionals and coexisting 
with other inheritance statements in NAL have a structure such as that of (28). 

 
(28) S  P 1.0, 1.0 

 
But perhaps a better way to express (28) is (29). 

 
(29) S obl P 

 

                                                 
55 Forrester (1996). 
56 Wang (2013, 129, italics in text). 
57 Wang (2013, 34). 
58 This identity between w and w+ is also considered in rules of NAL such as the ‘exem-

plification rule’; see, e.g., Wang (2013, 59-62). 
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In (29), ‘obl’ indicates that the statement is an obligation, and that reasoning is 
deontic. ‘obl’ keeps expressing an inheritance relation. However, that relation is 
deontic. In it, f = 1 and c = 1, and those values are never going to change by virtue of 
future evidence. This is because with ‘obl´ the system reasons about what should 
be, that is, about ideal situations, not about what is really. Because of AIKR, the 
values of f and c can always change in NAL. That is the reason why statements such 
as (29) should be dealt with as statements just under the rules and grammar of IL, 
even though they coexist with statements under the rules and grammar of NAL. 

DIL can explain the results reported in the literature on obligation conditionals 
in tasks of Modus Tollendo Tollens. The next section develops this point. 

 
DIL, obligation conditionals, and Modus Tollendo Tollens 

 
DIL deems obligation conditionals as inheritance statements such as (29), that is, 
ultimately, as inheritance statements in IL. A task of Modus Tollendo Tollens with 
this kind of statements can be represented as (30). 

 
(30) S obl P 

? obl P 
 

In (30), ‘P’ tries to denote the term contrary to P. What I mean by this is that the 
relation between P and P should be that in (31). 

 
(31) {PE  PE} = ø 

 
Where ‘PE’ stands for the extension of P59. 
 

If (29) and (31) are the case, then ‘SE  PE’ is not the case. Therefore, (32) is not 
possible. 

 
(32) S obl P 

 
Thus, IL can respond to the question in (30) with any term ´x´ that the system 
knows, provided that (33) holds. 

 
(33) S ≠ x 

                                                 
59 For a discussion about what negations are in IL and NAL, see, e.g., Wang (2013, Chap-

ter 9). 
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Furthermore, if the question is (34), 
 

(34) S obl P? 
 
The answer must be ´NO´. 
 

These responses the system must give are compatible with inferences with the 
structure of Modus Tollendo Tollens. They express that, whenever the term con-
trary to the predicate of an inheritance statement is considered, the initial subject 
of the statement cannot be the case. 

On the other hand, this continues to be coherent with the Stoic criterion. If ob-
ligation conditionals in DIL are as statement (28), or, if preferred, (29), that means 
that they are statements with f = 1, that is, fulfilling Chrysippus’ criterion. So, in 
Stoic logic, they should be expressed as conditionals, and not as negated conjunc-
tions. But if they are expressed as conditionals, the rule of Modus Tollendo Tollens 
can be applied to them in the Stoic system. 

A Stoic weak conditional, which is expressed as a negated conjunction, only al-
lows applying another schema: Modus Ponendo Tollens I60. As it is known, the 
structure of Modus Ponendo Tollens I is that in (35). 

 
(35) {(P  Q), P} ⊢ Q 

 
In propositional calculus, this does not make any points. (36) and (37) hold in the 
latter calculus. 

 
(36) P  Q ⊢ (P  Q) 

 
(37) (P  Q) ⊢ P  Q 

 
But (36) and (37) do not appear to be the case in Stoic logic. If it is necessary to 
distinguish between strong and weak conditionals, that means that they are sen-
tences with different senses. Modus Tollendo Tollens can be used only with a 
strong conditional in Stoic logic. If the conditional is weak, the rule to apply is Mo-
dus Ponendo Tollens I. My account of DIL respects that because it is about state-
ments in which f = 1, that is, statements corresponding to Stoic strong conditionals. 

                                                 
60 See Diogenes Laertius (Vitae Philosophorum, 7, 80). 
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One might think that both Modus Tollendo Tollens and Modus Ponendo Tol-
lens I can lead to the same conclusion if the second premise is the negation of the 
second clause. (38) is a version of (35). 

 
(38) {(P  Q), Q} ⊢ P 

 
However, we cannot forget that Stoic weak conditionals correspond to inheritance 
statements in which f < 1. Hence, although NAL also has rules to respond to ques-
tions such as ‘?  P’, the answers to those questions cannot be taken as completely 
correct answers. If f < 1, then w+ < w. That means that not all the pieces of evidence 
support the statement. On the contrary, in DIL Modus Tollendo Tollens is applied 
because f = 1, and the answers are correct with no doubts. So, DIL appears to be 
consistent with essential requirements of Stoic logic. 

As mentioned, in the literature, a very simple code in Common Lisp to deal with 
the Stoic conditional from NAL has been presented61. That code enables to express 
a sentence as a conditional or a negated conjunction by virtue of its frequency 
value. In Appendix 1, I will present a new function to complement that code. I will 
develop the code to also allow applying Modus Tollendo Tollens when the condi-
tional is strong and includes ‘if’ and ‘then’. But the main conclusion of all this seems 
to be obvious: the fact that Modus Tollendo Tollens is acceptable in DIL because 
in DIL obligations have f = 1 implies that DIL have two important characteristics. 
First, it is compatible with the literature about Modus Tollendo Tollens and obli-
gation conditionals. Second, it respects Chrysippus’ criterion as well. 

 
Conclusions 

A fact seems to be proved in the literature: while the inferences with Modus Tol-
lendo Tollens are usually hard to accept, that changes when the conditional is an 
obligation. I have tried to address this issue from NAL in this paper. 

NAL is based on IL and linked to a computer program such as NARS. If we un-
derstand conditionals as inheritance statements, and in particular, obligation con-
ditionals as inheritance statements with f = c = 1, the explanation is not difficult. 
The contrary to the predicate in the latter inheritance statements implies that a 
term is the case: a term whose extension does not include the initial subject or the 
extension of the initial subject. Therefore, if the opposite of the predicate is the 
case, its subject cannot be the initial subject. Otherwise, the inheritance statement 
would be false. 

                                                 
61 López-Astorga (2024). 
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Another important point is that, as also affirmed in the literature, the inher-
itance statements in which f = 1 are statements following Chrysippus’ requirement. 
This means that the system I have called ‘DIL’ is coherent with both the results in 
the literature on Modus Tollendo Tollens and obligation conditionals, and the 
Stoic criterion for conditional sentences. 

Further development of DIL remains pending. A priori and after the above, it 
seems that DIL could work well with NAL. However, the review of the inferential 
processes a logic such as DIL could make and how DIL could be really understood 
from NAL is still pending. 
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APPENDIX 1 

A very easy function in Common Lisp has been presented in the literature62. It al-
lows expressing conditionals according to what, following Sedley63, was the Stoic 
opinion. The function is: 
 
“(DEFUN CHRYSIPPUS (L1 L2 N) 
   (IF (= N 1) (APPEND '(IF) L1 '(THEN) L2) 
      (APPEND '(IT IS NOT THE CASE THAT) L1 '(AND NOT) L2)))”64. 
 
In the latter function, ‘L1’ is the first clause or subject, ‘L2’ represents the second 
clause or predicate, and N = f. 
 
If we write, 
 
CHRYSIPPUS ‘(THIS PHILOSOPHER IS A PYTHAGOREAN) ‘(THIS PHILOSOPHER 
IS A MATHEMATICIAN) 1 
 
The system responds, 
 
(IF THIS PHILOSOPHER IS A PYTHAGOREAN THEN THIS PHILOSOPHER IS A 
MATHEMATICIAN) 

                                                 
62 López-Astorga (2024). 
63 Sedley (1984). 
64 López-Astorga (2024, 55). 
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However, if we write,  
 
CHRYSIPPUS ‘(I AM EATING RICE) ‘(CARROT) 0.9 
 
The answer is, 
 
(IT IS NOT THE CASE THAT I AM EATING RICE AND NOT CARROT) 
 
This code can be improved enabling the use of Modus Tollendo Tollens when the 
conditional is strong. My proposal is (I keep using Common Lisp, LispWork Per-
sonal Edition), 
 
(DEFUN CHRYSIPPUSMTT (L1 L2 L3 N) 

(IF (AND (EQUAL (CAR (CHRYSIPPUS L1 L2 N)) 'IF) 
             (EQUAL (CAR L3) 'NOT) 
             (EQUAL (CDR L3) L2)) 
            (CONS 'NOT L1) 
         '(REJECTED OR NOT ACCEPTED))) 
 
L1 and L2 continue to be the first and second clauses (i.e., the subject and the pred-
icate). N also keeps being f. L3 is the second premise. 
 
Function CHRYSIPPUSMTT negates the first clause or subject if three conditions 
are fulfilled. The conditions are these: 
 

1. L1, L2, and N should allow building a strong conditional using function 
CHRYSIPPUS. 

2. L3 must starts with ‘NOT’. 
3. L3 without ‘NOT’ must be identical to L2. 

 
If at least one of these conditions is not the case, the system returns ‘(REJECTED 
OR NOT ACCEPTED)’. 
 
If we write, 
 
CHRYSIPPUSMTT ‘(PYTHAGOREAN) ‘(MATHEMATICIAN) ‘(NOT MATHEMATI-
CIAN) 1 
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The system gives, 
 
(NOT PYTHAGOREAN) 
 
Let us suppose a fictional context in which most Pythagorean philosophers are 
mathematicians, but not all of them. Thinking about that context, we can write, 
 
CHRYSIPPUSMTT ‘(PYTHAGOREAN) ‘(MATHEMATICIAN) ‘(NOT MATHEMATI-
CIAN) 0.9 
 
The response would be, 
 
(REJECTED OR NOT ACCEPTED) 
 
The answer will be the same if we commit the affirming the consequent fallacy and 
write, 
 
CHRYSIPPUSMTT ‘(PYTHAGOREAN) ‘(MATHEMATICIAN) ‘(MATHEMATICIAN) 1 
 
Finally, if the content of L3 without ‘NOT’ does not match that of L2, the response 
will continue to be the same. That will happen if we write, 
 
CHRYSIPPUSMTT ‘(PYTHAGOREAN) ‘(MATHEMATICIAN) ‘(NOT LOGICIAN) 1 
 
Of course, if more than one condition is not met, that is, if two conditions are not 
met, or the three conditions are not met, the answer will be ‘(REJECTED OR NOT 
ACCEPTED)’ as well. 
 
Functions CHRYSIPPUS and CHRYSIPPUSMTT are both very simple. My only goal 
with this appendix is to show that what has been proposed in this paper does not 
make the computational treatment of Chrysippus criterion more difficult. The lit-
erature has already linked the cases of f = 1 in NAL to the stoic requirement for the 
conditional. To relate the cases of f = 1 in NAL to the acceptance of Modus Tollendo 
Tollens (as this paper does) is not a problem for the link in the literature. 
 


